Função Modular - Gráfico.

Gráfico da Função Modular



A representação gráfica é bastante comum no estudo de funções. O gráfico da função modular possui um comportamento que depende do polinômio que está na lei de formação dessa função. Vejamos, a seguir, alguns exemplos de gráfico de função modular.

Exemplo 1: f(x) = |x + 1|
Analisando o gráfico, podemos dividir ele em dois casos:

f(x) = x + 1 → se x + 1 ≥ 0

f(x) = -x – 1 → se x + 1 < 0

Primeiro encontraremos o zero da função.

|x + 1| = 0

x + 1 = 0

x = -1

Sabemos que o ponto A (-1, 0) pertence ao gráfico dessa função. Agora escolheremos um valor menor e um valor maior para x.

Escolhendo x = -2:

f(-2) = |-2 + 1| = |-1| = 1 

B (-2, 1)

Agora, faremos x = 0:

f(0) = |0 + 1| = |1| = 1

C(0, 1)

Então marcaremos os três pontos no gráfico e faremos a representação dessa função:

Exemplo 2: f(x) = |x² – 4|
Primeiro encontraremos o zero da função:

x² – 4 = 0

x² = 4

x = ±√4

x = ±2

Então, temos que x1 = 2 e x2 = -2

Encontraremos o vértice da função. Primeiro somamos os zeros e dividimos por 2 para encontrar o xv.

xv = (-2 + 2) : 2 = 0 : 2 = 0

Substituindo o valor de x = 0, encontraremos yv:

yv = |0² – 4| = |-4| = 4

Assim, encontramos os pontos A(-2, 0), B(2, 0) e C(0, 4), e faremos a representação gráfica da função:


Vamos aos exercícios!

1. Construa o gráfico de cada Função definida a seguir.

a) f(x) = |x - 3|
b) g(x) = |-2x + 1|
c) h(x) = |x - 3| + 4

Respostas

a) f(x) = |x - 3|


b) g(x) = |-2x + 1|


c) h(x) = |x - 3| + 4




Referências:


Comentários

Postagens mais visitadas deste blog

Noções das Teoria dos Conjuntos - Descrição por uma Propriedade

Conjuntos Numéricos - Conjunto dos Números Reais.

Função Definida por mais de uma sentença - Gráfico.