Conjunto dos números Racionais Dado um número inteiro 𝑞 ≠ 1 e −1, o inverso de 𝑞 não existe em ℤ: 1 𝑞 ∉ ℤ. Por isso não podemos definir em ℤ a operação de divisão, dando significado ao símbolo 𝑝/𝑞 Vamos superar essa dificuldade introduzindo os números racionais. Chama-se conjunto dos números racionais — símbolo ℚ — o conjunto dos pares ordenados (ou frações) 𝑎/𝑏, em que 𝑎 ∈ ℤ 𝑒 𝑏 ∈ ℤ ∗, para os quais adotam-se as seguintes definições: 4 1ª) igualdade: 𝑎/𝑏 = 𝑐/𝑑 ⇔ 𝑎𝑑 = 𝑏𝑐 2ª) adição: 𝑎/𝑏 + 𝑐/𝑑 = 𝑎𝑑:𝑏𝑐 𝑏𝑑 3ª) multiplicação: 𝑎/𝑏 ∙ 𝑐/𝑑 = 𝑎𝑐/𝑏d No conjunto dos racionais destacamos os subconjuntos: ℚ; (conjunto dos racionais não positivos); ℚ: (conjunto dos racionais não negativos); ℚ∗ (conjunto dos racionais não nulos). Na fração 𝑎 𝑏, 𝑎 é o numerador e 𝑏 o denominador. Se 𝑎 e 𝑏 são primos entre si, isto é, se 𝑚𝑑𝑐 𝑎, 𝑏 = 1, dizemos que 𝑎 𝑏 é uma fração irredutível. Assim, as frações 2/3,...
Comentários
Postar um comentário